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Abstract-This paper demonstrates that the two-port network formalism, commonly used to treat one- 
dimensional heat flow problems in composite slabs, is also applicable to three-dimensional problems in 
the context of integral transform methods. This provides easy calculation means for temperature and heat 

flux distributions within multilayered systems. Both spectral and superposition methods are thus presented 
as examples in a variety of cases of interest 10 engineers. 

1. INTRODUCTION 

CONDUCTIVE heat transfer through multilayered 
media is a relevant problem in many engineering 
fields. For example, in power electronics the heat sink- 
ing of semiconductor devices mainly relies on the 3D 
heat conducting properties of the packaging 
materials. 

At present, heat flow calculations in multilayered 
systems are successfully handled by purely numerical 
methods. Nevertheless, as far as the device geometry, 
boundary conditions and material properties 
(especially linearity) allow it, analytical approaches 
remain of interest to designers since they give a more 
synthetic insight into the influence of each parameter 
and generally lead to substantial computational 
savings. 

The essentials of analytical approaches together 
with the major applications to the multilayer problem 
can be found in classical textbooks concerned with 
heat conduction [I, 21 or electrostatics [3]. Sche- 
matically, the various methods are based on variable 
separation in the heat equation, Green’s functions and 
superposition principle, or integral transforms, and 
are closely related through the assumed linearity of 
the heat flow. 

The published results, whatever method is used, are 
restricted to special cases involving a limited number 
of layers, featuring various geometrical shapes and 
boundary conditions. A typical example of this is a 
two or three-layer parallelepiped with heaters dis- 
tributed at the top surface, adiabatic lateral faces and 
an isothermal bottom surface [4-61. Also, the 3D- 
electrostatic potential Green’s function has been 
derived for a three-layer medium of infinite lateral 
extent bounded by ground planes [7]. To our knowl- 
edge, no calculation procedure has been proposed for 

an unlimited number of layers except for Brook and 
Smith’s analysis of the spreading resistance of axi- 
symmetric multilayer cylinders [8. 91. Indeed, besides 
cumbersome mathematical developments, the major 
difficulty in performing analytical solutions to the 
multiple-layer problem arises from the boundary con- 
ditions that couple adjacent layers. 

This paper proposes a method for circumventing 
this difficulty. It introduces a two-port matrix for- 
malism in the 3D analysis of heat flow through multi- 
layered media. The two-port formalism derived from 
the circuit theory is already known in the field of 
heat conduction where it has been applied to one- 
dimensional transient problems through composite 
slabs [I, l&12]. Here, the aim is to show that this 
formalism is also applicable to three-dimensional 
problems. This will allow the previous analysis to be 
generalized, and will provide easy means of cal- 
culation for temperature and heat flux distributions 
in multilayered systems, in the context of integral 
transform methods. In addition, it will be shown that 
the two-port matrix formalism gives a theoretical 
basis for thermal characterization of multilayered 
devices. 

2. DEFINITION OF THE PROBLEM 

The structure of interest is shown in Fig. I. It con- 
sists of adjacent material layers labelled . . i, i+ 1 
with plane parallel boundaries between them. Each 
layer of width wi is assumed to be homogeneous and 
isotropic with constant thermal conductivity k, and 
diffusivity Di. The interfaces are not necessarily ideal 
and a contact conductance gi per unit area will be 
considered between each layer i and the following one. 

The lateral extent of the system may be infinite or 
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NOMENCLATURE 

N radius of a circular heat source P total dissipated power 

[A,1 characteristic chain-matrix relative to Rttl thermal resistance 
layer i s complex angular frequency 

AII>AIZ,AZI,AZZ chain-matrix parameters t time variable 
C thermal influence function H’, thickness of layer i 

D, thermal diffusivity of the i-layer .K, .I’, : Cartesian coordinates 
material z,. -2, z, ordinates of plane boundaries 

Cl, contact conductance between the i- Z, ,, Z,z. Z?,, ZIz impedance-matrix 
and i+ 1 -layer parameters. 

HI, hybrid-matrix parameter 
Jo. J, Bessel functions of the first kind of 

order zero and one respectively Greek symbols 

k thermal conductivity of the i-layer @, :-component of the transformed heat 
material flux density in layer i 

L. I length and width of a rectangular P radial distance 
contour 0, temperature rise in layer i 

m, m* wave number or spatial angular 0, transform of the temperature rise in 
frequency layer i 

P density of dissipated power 53 ? spatial coordinates. 

finite. In the latter case, the variety of geometrical 
shapes (e.g. parallelepipedic, circular cylinder, . .) 
and boundary conditions (e.g. adiabatic, isothermal, 

.) which can be considered is inevitably restricted 
by the availability of adequate transformations. This 
will be discussed in Section 4. 

Heat sinking and arbitrary heat sources are 
assumed to be provided at the opposite limiting planes 
of the system, no heat being generated in the bulk 
layers. 

heat flow direction 
7. -axis 

loye! I 

I 

2,j 

FIG. 1. Schematic representation of the multilayer system 
and symbols used in theoretical analysis. 

Thus, the temperature increase 0, (<,q,:. t) in each 
layer i is the solution of the 3D heat conduction equa- 
tion : 

subject to the appropriate boundary conditions. The 
coordinates (<,q,:) may be either Cartesian (x, y,:) 
or cylindrical (p, 0, :). as the case may be. 

3.GENERALAPPROACH 

3.1. Steady heatflow 

For clarity, first consider steady heat flow. Then, 
equation (I) reduces to Laplace’s equation : 

V20;(5, q.z) = 0. (2) 

It is well-known that the use of some double integral 
transformations in the coordinates <,r~ may reduce 
equation (2) to the following ordinary differential 
equation : 

d20, 
d-’ = m20, 

where the transform Oi of the temperature Oi depends 
on a new set of variables (p, v, z) and m is linked to p 
and v. However, this reduction only occurs if the 
transformation is compatible with the prescribed lat- 
eral boundary conditions, as discussed in Section 4. 
Examples of these linear operators are the double 
Fourier transform for laterally unlimited systems or 
the zero-order Hankel transform in case of axisym- 
metry, the double finite sine and cosine transforms 
in parallelepipedic systems with isothermal (sine) or 
adiabatic (cosine) lateral boundary conditions [13]. 
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I f  the adequate transformation exists, the general 
solution for 0, is simply 

0, = c, e-““+ c; e+“” 
(4) 

where C, and C: are functions of the transformed 
variables. 

The transform @,, of the z-component (-k, 60,/ii:) 
of the heat flux distribution in the i-layer is obtained 
from this result 

@ = tp& C e-“‘: -& C’ e+“” , # 0 (5) 

At the boundary: = :, between the ith and (i+ I)th 
layers, the continuity of the z-component of heat flux 
generally imposes a temperature jump 

k, 60, 
0, k+ I- 0, (-,- 1 = ; 3; -, 

where g, is the contact conductance between both 
layers, relative to the unit area. 

Because of linearity, this condition still holds for 
temperature transforms 

O,(q+)-o,(q) = % z : (7) 
, 

Therefore, it follows from equation (4) that 

O,(z,+) = (I -nzk,/g,)C, e-““t 

+ (1 +mk,/,q,)Ci e+““,. (8) 

Now, consider the transforms of temperature and 
heat flux at the boundaries of the i-layer, including 
the non-ideal interface with the (i+ 1)th layer. Let 

a,, = @,(z,‘_,) = C,e-““,-~+c:e+““,-~ 

O,? = @,(I:) = (I -ntk,/,q,)C, e-““, 

+(l +nzk,/g,)C:e+““, 

a,, = @,,(z,- ,) = mk,Ciem’“‘a-I-mk,C: e+““,-l 

(D,? = 4,(z,) = mk,C, e-““r-mk,C; e+““,. (9) 

Eliminating the unknown functions C, and Cl leads 
to 

0, , = ch(mwi)@i2 + (sh(mw;)/(mk,) +ch(mwi)/gi)@,z 

4,, = mk,sh(r?rw,)Oi2 

+ (m(k,/g,)sh(mw,) +ch(mw;))@,2 (IO) 

where w, is the i-layer width, or, using a matrix 
notation 

with 

sh(mw,) ch(mw,) 
-+- 

mk, gi 

m(ki/g,)sh(mwi) +ch(mw,) 1 
(12) 

[A,(m)] is a chain-matrix (or transmission matrix) 
according to the four terminal (two-port) network 
theory. It connects the transforms of the ‘input’ and 
‘output’ temperature and flux distributions relative 
to the i-layer. This implies an analogy between heat 
conduction through multilayered media and signal 
transmission through a cascade of two-port low-pass 
filters. 

For a long time. this analogy has been recognized 
and used together with Fourier or Laplace transforms 
operating on the time variable I, in order to solve 1 D 
problems, for instance in composite slabs [I, l&12]. 
However, the formal identity between the matrix par- 
ameter expressions in (12) and those encountered in 
the study of unsteady ID heat flow must not hide the 
fact that the problem here is not time-dependent but 
actually three-dimensional in space. To our knowl- 
edge, the application of the four terminal network 
theory to spatial aspects of heat conduction has not 
been explored to date. 

It readily follows that the variable tn (wave number) 
plays the role of a spatial angular frequency and 

-Matrix [A,(m)] characterizes the properties of 
steady thermal conduction in the i-layer. indepen- 
dently of the actual lateral boundary conditions. 

-The characteristic matrix [A] for a slab ofn layers 
may simply be obtained by successively multiplying 
the corresponding matrices [A,] 

[Al = [A,l[A21”‘[4,1. (13) 

-Other matrices of the four terminal classical 
theory or the scattering matrix (S-parameters) of the 
wave theory may be used. The impedance [Z], admit- 
tance [Y] and hybrid [H] matrices may be ofparticular 
interest [l4]. 

-The usual concepts and results of the two-port 
network theory can be transposed. For instance, the 
reciprocity properties of passive networks apply to 
heat transfer through multilayer media: the deter- 
minant of matrix [A] is equal to I. the [Z] and [Y] 
matrices being antisymmetrical. 

3.2. iJnsteac& hratjow 
In the case of unsteady heat flow with zero initial 

temperature throughout the structure, a simultaneous 
use of the Laplace transform operating on the time 
and the spatial transformation in < and ,I allow to 
reduce equation (I) to 

where s is the complex angular frequency. This ordi- 
nary differential equation would also hold for non- 
zero steady initial conditions if temperature variations 
rather than real temperatures were considered. 

Thus, the above considerations relative to steady 
heat flow still apply but the difference lies in that the 
variable m should be replaced with : 
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(15) 

and the conclusions in terms of usefulness of the two- 
port network theory remain unchanged. 

4. CALCULATION OF TEMPERATURE AND 

FLUX DISTRIBUTIONS 

For clarity, again we consider the steady heat flow. 
As stated above, the chain matrix [A] relative to a 

multilayered medium bounded by two parallel planes 
z = z, and :=a? (see Fig. I) provides two linear 
relationships between the temperature and heat flux 
transforms (or spectra) O,,(I), at z = Z, and OZ.@? 
at:=-? 

0, = A,,(nI)Oz+A,z(n7)@2 

@,, = A2,(m)02+A~&7)@2. (16) 

Thus, as soon as two of these transforms are known 
according to the conditions imposed at :, and zz, the 
two others readily follow. The transforms O,,@,; at 
any intermediate plane z are then obtained by using 
one of the two [A] matrices relative to the media 
comprised between 2, and : on the one hand, and z 
and a2 on the other. 

Therefore, in practice, calculation only requires sel- 
ecting the adequate transforms, if they exist, allowing 
the lateral boundary conditions to be expressed in the 
m-spectral domain and the results to be returned in 
the spatial domain. 

Representative cases are 

(a) Multilayered medium of laterally infinite 
extent ; axisymmetrical sources and sinks. 

The zero-order Hankel transform applies to this 
situation 

s 

x 
F(m) = pf(p)J,(~7p)dp (17) 

0 

where p is the radial distance from the symmetry :- 
axis and J,, the Bessel function of the first kind of 
order zero. The inverse transform is 

f(P) = 
s 

x 
,77F(m)J,,(mp) dm. (18) 

0 

By way of example, let us calculate the maximum 
temperature reached in the system of Fig. 2 which 
models cooling of a semiconductor chip through a 
composite substrate and a radiator. A uniform heat 
flux distribution is considered over a circular area of 
radius a at the top surface of the substrate and a 
constant convective transfer coefficient /I to a cooling 
fluid is assumed at the bottom. 

From the general formulation equation (l6), the 
temperature transform at the top z = 7, for O? = 0 at 
the bottom, z = :? can be expressed as 

(19) 

or, using the hybrid parameter notation 

@,@I = H,,(m)@,(m). (20) 

In this example, the Hankel transform Q,, of the 
input heat flux distribution at Z, is 

Substrate 

mermal 
grease - 

cl g=0,4W,(Kcm2) 

2.1 W/(K.cm) 0.875 cm2/s 5.0 mm 

FIG. 2. Model for a power chip assembly and data (thermal conductivity, diffusivity, width) for calculations. 
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J, (ma) 
0, =----P 

lKI?7N 

where J, is the Bessel function of first order and P 
the injected power. The chain parameters A I2 and A 22 
are obtained by multiplying the characteristic [A] 
matrices, equation (12). of the successive layers from 
source to sink. For the bottom layer, the heat transfer 
coefficient /1 substitutes for the conductance .q per 
unit area of the non-ideal interface. All operations up 
to equation (20) can be carried out explicitly but in 
practice are better performed numerically for a dis- 
cretc set of values of m. 

Then, the numerical computation of the inverse 
transform, equation (18) for @,(~n) (in practice 
reduced to the computation of a Bessel series) leads 
to the radial distribution O(p) of the temperature rise 
at the top surface of the substrate. In particular, since 
the maximum temperature O,,, occurs at the origin 
p = 0, the apparent thermal resistance R,, = O,,,/P is 
given by 

The results arc shown in Fig. 3 as a function of the 
radius CJ, for the substrate parameter values indicated 
in Fig. 2. 

(b) Multilayered medium of infinite lateral extent; 
general case. 

The double Fourier transformation applies. In Car- 
tesian coordinates we have the following relations : 

0.01 

0.001 0.01 0.1 1 10 100 

a in cm 

FIG. 3. Spreading thermal resistance of the system described 
in Fig. 2 as a function of the heat source radius. 

A,----------------------------,B 
I I 
I I 

I 
Control 
circuitry ! 

I 
I 

i 
I 

lcm 

'1 

DI 
I ------------------------------ C 

FIG. 4. Geometrical arrangement of a power MOS multi- 
chip module. 

x e”“‘, ‘+“‘$ dm, dtn,.. (24) 

In this case. them variable ofthe [A] matrices relates 
simply to the two wave numbers nz, and 1~7,. by : 

tn = (mt+m2)’ ‘. (25) 
Other coordinate systems could be used, the most 

common one being the polar coordinates. However, 
from a practical point of view, numerical com- 
putations of temperature and/or heat flux dis- 
tributions according to the scheme explained above 
are better performed using 2D FFT routines in s and 
.I’. 

By way of example, Fig. 5 shows the temperature 
map at the top of the substrate of Fig. 2, so obtained 
for the geometrical arrangement of heat sources 
shown in Fig. 4. This corresponds to the special case 

o.o:,,.,,.,~,,,,,.~,,~,,,,,,,,~~,,,,,,,,,l,,,,,~,,,I 
0.0 0.5 1.0 1.5 2.0 

x in cm 
FIG. 5. Thermal map (temperature rise in K) for a 10 W per 
chip power dissipation (substrate of infinite lateral extent). 
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of a power MOS multichip module. A IO W power 
dissipation is assumed for each MOS transistor. 

(c) Multilayered medium of finite extent; paral- 
lelepipedic case. 

Finite transforms must be employed. For rec- 
tangular shaped lateral boundaries (parallelepipedic 
system), the double finite cosine transform applies for 
adiabatic boundaries with the pair of relations 

xcos n+ ds dy (26) 
( > 

where L. I are the length and width of the lateral 
boundary contour and S is the Kronecker symbol. 

Similarly, the double finite sine transform holds for 
isothermal boundary conditions 

x sin jr,:y dx- djj (28) 
( > 

xsin(~~~~)sin(,i,.~~). (29) 

Mixed finite cosine-sine transforms are used when 
a couple of opposite sides are adiabatic and the other 
is isothermal. I f  the conditions differ on two opposite 
sides, the image method can be used taking into 
account the consequential symmetries in order to con- 
vert the temperature and flux distributions into odd 
or even functions with respect to the X, y  coordinates. 

In all cases, them variable of the [A] matrices relates 
simply to the integers n, and n,. by : 

(30) 

In practical calculations, FFT algorithms may be 
used for convenience. Figures 6 and 7 give, as exam- 
ples, the modified temperature maps for the problem 
defined in Figs. 2 and 4 as the substrate is delimited as 
shown by the dashed line contour ABCD. Figure 6 
refers to adiabatic lateral boundary conditions and 
Fig. 7 to mixed conditions (adiabatic AB, BC, DA, 
isothermal DC). 

The parallelepipedic case of multilayered media 
with a laterally finite extent is not restrictive, though 

0.0 0.5 1.0 1.5 2.0 

x in cm 

FIG. 6. Thermal map (adiabatic lateral boundary con- 
ditions). 

most important in practice. Two-dimensional Fourier 
representations can be obtained in coordinate systems 
other than the Cartesian one. These may be suited in 
the case of cylindrically shaped devices. Of particular 
interest are circular cylinders with adiabatic or iso- 
thermal lateral boundary conditions to which double 
Fourier-Bessel series apply [ 151. However. calcula- 
tions are much more cumbersome. 

4.2. Unsteadv heatjlow 

Subject to the use of an additional FFT in time, the 
calculation procedure, according to equation (16) is 
the same. Note simply that in [A] matrices, the vari- 
able tti is now replaced by m* = (r?r’+s/D,) I”. With 
respect to the spatial conditions previously considered 

0.0 0.5 1.0 1.5 2.0 

x in cm 

FIG. 7. Thermal map (one isothermal side). 
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6 
Y 
.E 5 

b : t = 0.39s 
c : t = 0.205 

IL I / 4 I f I I 

0 0.5 ! 1.5 2 2.5 3 
Radial distance in cm 

FG. 8. Evolution in timeofradial temperaturedistribution in 
ease (a) (axisymmetry). Source radius N = 0.5 cm, dissipated 

power P = IO W. 

in case (a) (axisymmetry). Fig. 8 displays the cvolu- 
tion in time of the radial temperature distribution at 
the top surface of the substrate of Fig. 2, for a source 
radius N = 0.5 cm and a dissipated power P = IO W. 

4.3. Alternaticv culculuriot~ procerlurc~ 

An alternative computation scheme exists for the 
examples given. One may restrict the use of the basic 
relationships equation (16) in the spectral domain to 
an axisymmetric heat flow due to an elemental source, 
assuming a lateral indefinite extent of the multilayered 
medium (case (a)) as defined in Section 4.1. Then, 
the effective calculation of temperature and/or flux 
distributions can be done using : 

(i) the superposition principle for the influences of 
a distribution of elemental sources, and 

(ii) the method of images to represent the lateral 
boundary conditions. 

The principle of this approach has been published 
elsewhere [6, 161. Worthy of note here is the key 
expression applying to the aforementioned examples. 
Refering to Fig. 9, it follows from the linearity of the 

system. that the temperature rise at the top of the 
substrate considered is given by 

~(.Y’.J’) denotes the heat flux density at point 
P(.Y’, J’) and c(p) ds’ d).’ represents the contribution 
of an clement ds = d.r’ dj,’ of the dissipating arca S to 
the temperature rise at M(.u,j*). The c(p) function 
which only depends on the radial distance p between 
the two points P and M is thcrcforc the Green’s func- 
tion of the laterally unlimited problem. for the par- 
ticular value z, of the z-coordinate corresponding to 
the top surface. It can easily be shown. by using the 
Hankel transform of equation (31) for a unit power 
point source (axisymmetry. polar coordinates) and by 
comparing the result with equation (19). that c(p) is 
the inverse transform of H, , (rn)/h 

that is 

( 

A , z(t11) 

Or > 2nA2~(m) ’ 

I ‘ 
4P) = G 

s 
mH, , (/n)J,,(n~p) dp. (32) 

” 

This function can be computed once and for all for 
a given multilayered system, thus providing an easy 
means of temperature mapping through the integral 
equation (31). I f  the substrate is laterally shaped as 
parallelepipedic, the integral must be extended not 
only to the ‘true’ dissipating area but also to its images 
in the adiabatic or isothermal planes that define the 
system laterally. Figure IO illustrates the application 
of the method of images to lateral adiabatic faces. In 
practice, the influence of images in the far distance 
can be neglected as the c(p) function decreases as 
p increases. Of course. the results obtained in the 
examples given in Figs. S-8 are virtually identical. This 
method may or may not compare favourably with the 
spectral method previously described, as the case may 
be, and according to the resolution and accuracy 

FIG. 9. Introducing schematically the superposition method. 
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FIG. IO. Illustrating the use of image sources (adiabatic 
boundary conditions). 

required in the calculation. Hcrc, the superposition 
method is found to need less computational time in 
the example of Fig. 5 (no lateral constriction of heat 
flux). but it is less efficient in the example of Fig. 6. 
due to the large number of images to bc taken into 
consideration. In all cases. memory occupancy and 
computational time are compatible with the USC of 
PC’s (some tenths of seconds with a 0.3 Mflops com- 
puter). 

5. FURTHER IMPLICATIONS 

The parameters of the aforementioned matrices 
which relate to a layer or a block of layers act as 
transfer functions fully characterizing the thermal 
behaviour of the substrate. Thus, the H, , (111) par- 
ameter defined by equation (20) 

(33) 

represents the thermal ‘input nr-impedance’ of the 
stack when the lower face is forced to remain iso- 
thermal. For the composite substrate and radiator 
shown in Fig. 2, the H, ,(m) variations describing the 
overall thermal behaviour of the assembly are plotted 
in Fig. I I. When comparing to the hybrid parameters 

H,,(m) In K.cm’/W 

100 i I 
a 

: 

0.001 I 
I I I I c 

0.01 0.1 1 10 100 
m m cm” 

FE. I I. Illustrating thermal analysis using the HII (m) par- 
ameter. 

of the substrate and the aluminium cooler considered 
separately, it appears that at low ‘spatial frcqucncies’ 
(small values of the wave number in) the thermal 
bchaviour is mainly imposed by the cooler, including 
the interracial layer of thermal grease, whereas the 
bchaviour of the hybrid substrate prevails at high 
‘spatial frequencies’ (high values of nr). 

Variations of H,, (ITT) as shown in Fig. I I arc very 
similar to Bode plots for low-pass filters and can be 
interpreted in the following manner : 

(i) The low ‘frequency’ asymptote accounts for 
the ID thermal resistance (per unit area) of the con- 
sidered assembly. 

(ii) At high ‘spatial frequencies’ the thermal behav- 
iour of the assembly tends asymptotically toward the 
response of a semi-infinite medium having the same 
thermal conductivity as the first layer or toward the 
interface contact rcsislance if it exists. 

(iii) At intermediate frequency values, cut-off 
frequencies rclatcd to the 3D conductive heat transfer 
properties of the assembly occur. The inverses of the 
cut-off frequencies are representative of the heat- 
source size for which these 3D conductive properties 
apply. 

Thus. these diagrams provide- a synthetical over- 
view of the thcmlal properties of an assembly and in 
all respects are similar to the Bode plots used for the 
frequential characterization of electronic circuits. 

Other matrix parameters may be used to describe 
the thermal behaviour of a multilayered thermal 
system. depending on the kind of homogeneous 
boundary conditions intended for temperature or flux 
distributions. 

The experimental characterization of multilayered 
assemblies can be achieved on the basis of the two-port 
network theory. Taking into account the reciprocity 
property linked to passivity, the measurement of a 
consistent set of only three parameters is required. 
However, the possible procedures indicated by the 
definition of the various parameters are restricted 
by practical considerations. Of course, it is easier to 
measure temperature rises than thermal fluxes and to 
set adiabatic rather than isothermal boundary 
conditions, therefore the Z (impedance matrix) par- 
ameters are the most easily accessible. These par- 
ameters are defined as follows : 

For simplicity, an axisymmetrical experimental set 
allows us to use the O-order Hankel transform (cf. Sec- 
tion 4.1) to handle experimental data (see Fig. 12). 



Two-port network formalism for 3D heat conduction 2325 

P -P 

t 

e,(P) 

eref 
M+l+ll 

- 
t 

e ref 

-~_-----__-__--___________ 
substrate to be characterized 

_--__---__-__-----_--~~~-- 

- B?(P) 

FIG. 12. Schematic of an experimental setting for Z-matrix parameter measurements. 

The size of the heat source must be suited to the ,n- 
spectral range which should be explored. The injected 
power must be sinked by a circular heat-sink which 
is concentric with the heat-source. The radial flux 
distribution considered for computation must include 

the injected and removed heat fluxes. Except for the 
injecting and sinking arcns. the substrate has to 
remain adiabatic everywhere ; particular care must 
therefore be taken to minimize power losses due to 
convective or radiative heat exchange with the ambi- 
ent medium. 

To illustrate this. Fig. 13 shows a thermogram of 
a substrate intended for hybrid integrated power 
circuits. The heat source is a transistor fixed on the 
substrate in a corner to make optimal USC of the sym- 
metry. a circular heat-sinking is provided at some 
distance. The isothermal lines are quite circular as 

previously assumed. Temperature distributions II, (p) 
(on the upper face) and O,(p) (on the lower face) are 
measured by I.R. thermography, the Z, , and Z2, are 
obtained by dividing the numerical Hankel transform 
of II,(p) and Oz(f)) by the Hankel transform of the 
heat flux distribution. Turning the substrate upside 
down. one gets the 2,: and Z2: parameters in the 
same way [ 141. Details about the experimental setting 
and data processing will be further discussed in a 
subsequent publication [ 171. 

6. CONCLUSION 

This paper has addressed the Fairly old issue of 
conductive heat transfer through multilayered media. 
It has been shown that, within integral transform 
methods, 3D heat flow may be simply described in the 

FIG. 13. I.R. thermogram of U,(p) distribution illustrating the measurement procedure for a special kind 
of a power hybrid substrate. 
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spectral domain using a two-port network formalism 
similar to that of the linear circuit theory. Each layer 

or each group oflayers, or the whole medium itselfcan 
be characterized by a simple chain (or transmission) 
matrix. This allows the analogy between heat con- 

duction through multilayered media and signal trans- 

mission through a cascade of four-terminal networks 
to be extended to a class of 3D problems. 

The concerned class of problems is that in which 
the stated lateral boundary conditions allow the heat 
conduction equation to be reduced to an ordinary 
differential of the form d’O/d? = WI’@. using the 
available finite or infinite transformations. It involves 
various cases of interest to engineers (multilayered 
rectangular parallelepiped for instance), some of 
which are thoroughly presented as examples. Two 
different approaches are tested for the practical cal- 
culations of temperature and heat flux distributions 
in the systems considered. These are : 

(i) A purely spectral method which uses 2D fast- 
Fourier transforms. 

(ii) A procedure taking advantage of the super- 

position principle and the method of images. 

The former is found. to be more efficient in cases 

where the heat flux is severely constricted by the lateral 
boundaries of the medium, while the latter is more 
practical for a widely spread heat flow. 

In addition, it is shown that the proposed formalism 
is well suited to thermal analysis and characterization 
of multilayered devices. 
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